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Abstract

Many pre-mRNA processing events including 5V end capping, splicing out introns, and 3V end maturation by cleavage or polyadenylation

occur while the nascent RNA chain is being synthesized by RNA polymerase II. As a consequence of this arrangement, the physiological

substrate for most processing factors is not a solitary pre-RNA but instead a ternary complex comprising a growing RNA chain spewing from

the exit channel of an RNA polymerase II molecule as it speeds along a chromatin template at 1000–2000 bases/min. mRNA processing

factors make protein–protein contacts with elongating pol II in a complex we have dubbed the ‘‘mRNA factory,’’ which carries out synthesis,

processing, and packaging of the transcript. Recent studies have shown that the ‘‘mRNA factory’’ is a dynamic complex whose composition

changes as it traverses the length of a gene. This complex is also the setting for a growing number of regulatory interactions, which influence

the function of both the processing and transcription machineries.

D 2004 Elsevier Inc. All rights reserved.

The pol II CTD: a landing pad for processing factors mRNA capping and 3V end formation [7,8]. It is not yet
The task of transcribing protein-encoded genes is

reserved exclusively for one of the three nuclear RNA

polymerases. RNA pol II is equipped with a unique

protein domain to tackle the job of directing cotranscrip-

tional processing. This C-terminal domain (CTD) of the

pol II large subunit composes tandem repeats of the

consensus heptad Y1S2P3T4S5P6S7, which is conserved

from fungi to humans [1]. Deletion of the CTD in

vertebrate cells reduces the overall level of transcription

without necessarily affecting the accuracy of initiation.

Deletion of the CTD inhibits all three major pre-mRNA

processing steps in vertebrate cells: capping, splicing, and

poly A site cleavage [2,3]. The CTD provides at least

three functions to stimulate each of these processing steps

independently [4]. In extracts, recombinant CTD and

intact pol II can stimulate splicing and poly A site

cleavage independently of ongoing transcription [5,6]. In

budding yeast, the role of the CTD in pre-mRNA

processing is not as important; however, it does influence
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clear whether the CTD influences other RNA processing

steps such as editing and histone 3V end formation, but it

is required for processing of U2 snRNA 3V ends [9,10].

The CTD functions as a landing pad for reversible

interactions with RNA processing factors [11] that serve

to localize those factors close to their substrate RNAs

and to act as a conduits for two-way communication with

the polymerase. The heptad repeats are substrates for a

peptidyl prolyl isomerase [12] and several kinases and

phosphatases, which modify serine residues during tran-

scription thereby presenting distinct CTD surfaces to

interacting factors at different stages of the transcription

cycle. The CTD becomes phosphorylated on Ser5 resi-

dues by the TFIIH associated kinase at the time of

transcript initiation. Later, these phosphates are removed

and others are added on Ser2 residues by the kinases

CTK1 in budding yeast and PTEFb (CDK9) in metazo-

ans [13–15]. In mammals, the minimum requirements for

CTD function in mRNA processing are provided by

about 25 tandem heptad repeats plus an essential 10

amino acid motif at the C-terminus [16,17]. We are only

just beginning to understand the signals exchanged be-

tween processing factors and polymerase that couple

transcription with capping, splicing, and 3V end formation



Fig. 1. The mRNA factory model. Schematic representation of cotranscriptional processing. Processing factors interact with the pol II machinery via the

carboxyl-terminal domain (CTD) of the largest subunit of RNA pol II, Rpb1. Increased size of the symbols for processing factors corresponds to increased

levels of in vivo formaldehyde cross-linking, measured by ChIP experiments. Capping enzymes, RT, GT, and MT, and 3V end modifying factors (poly A) are

recruited at the 5V ends of genes. As Pol II traverses the gene, splicing factors associate with the transcription complex. Phosphorylation of Ser2 and Ser5

residues in the CTD heptad repeats is indicated in red. Exon numbers are marked in colored boxes. Introns are shown in black boxes. The red star represents the

cap structure.
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(Fig. 1). Excellent recent reviews of this area include

Refs. [18–24].
Capping: two-way communication between pol II and

processing enzymes

All pol II transcripts are marked at their 5V ends by the

addition of a methylated guanosine cap, when nascent RNA

is about 22–40 bases long [25–28]. The cap is a major

determinant of mRNA stability, which stimulate splicing, 3V
end processing, transport, and translation [29]. Capping is

carried out by three enzymes acting in the order: RNA

triphosphatase (RT), RNA guanylyltransferase (GT), and

RNA- (guanine-7) methyltransferase (MT). Metazoans have

a single bifunctional polypeptide with RT and GT domains,

whereas budding yeast has two polypeptides, Cet1 and

Ceg1, which form a heterotrimer [30]. Capping enzymes

are brought to the right place at the right time by binding to

the CTD when it becomes phosphorylated by TFIIH close to

the promoter in vivo [3,31–33] and in vitro [27]. In vitro,

there is a significant lag between guanylation and methyl-

ation of the cap [27,28].

Interaction of capping enzymes with elements of the

transcriptional machinery influences both capping and
transcription in the best example of two way signaling

between processing and transcription machines. One line

of communication is suggested by the intriguing observa-

tion that, at least in vitro, a transcription factor, the HIV1

Tat protein, binds to GT after it is recruited to the CTD

and stimulates capping [27]. It is not known whether

cellular transcription factors can also influence capping.

Binding of mammalian GT domain to CTD heptads

phosphorylated at Ser5 reduces its Km for GTP [34]

consistent with the crystal structure showing interaction

of a Ser5 phosphorylated CTD heptad near the nucleotide

binding pocket of Candida albicans GT [35]. This

structure and that of a phosphorylated CTD peptide bound

to the peptidyl prolyl isomerase Pin1 [36] show that (i)

key contacts are made with the Tyr1 and Ser5-PO4; (ii)

that up to three consecutive heptads can contribute to

binding interactions; and (iii) that different heptads of

identical sequence can assume different conformations

when they complex with partner proteins.

Phosphorylation of the CTD on Ser5 residues by the

TFIIH associated kinase Kin28 is required for recruitment

of the RT-GT complex and of the MT to the 5V ends of

yeast genes as determined by in vivo cross-linking.

Removal of Ser5 phosphates from the CTD during early

elongation is correlated with release of capping enzymes
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from the elongating polymerase; however, the GT and

MT are not released at the same time [8,33]. Whereas GT

is released rapidly within the first 500 bases of the gene,

MT is released slowly and significant amounts remain

associated with pol II even at the 3V end. The yeast MT,

Abd1, turns out to have two independent functions in

capping and in modulating pol II function. Conditional

mutants of Abd1 have defects in binding of pol II to the

promoter at some genes and in promoter clearance or

early elongation at other genes [37]. Whereas Abd1 has a

positive role in pol II transcription, another capping

enzyme the RT, Cet1, has a negative role in preventing

reinitiation [38]. Together, these two capping enzymes

appear to manipulate pol II function at the 5V end of a

gene to achieve cotranscriptional capping and perhaps to

act as a checkpoint that holds up elongation until a cap

has been added to the nascent transcript.
Splicing and kinetic coupling with transcription

A typical mammalian gene contains nine introns and

spans about 30 kb. An average intron is over 3000 base

pairs (bp) long while an average exon is only about 150

bp [39]. About 35% of human genes are alternatively

spliced often giving rise to many different transcripts so

that approximately 35,000 genes can code for an estimat-

ed 100,000 or more different proteins. Splicing is cata-

lyzed by a dynamic complex comprising five UsnRNPs

(U1, U2, U4, U5, and U6) and associated proteins called

the spliceosome. Mass spectrometry of spliceosome com-

plexes at different stages in the splicing reaction has

produced a catalogue of over 200 polypeptides [40].

Spliceosomal snRNPs and associated proteins recognize

the canonical 5V and 3V splice sites and branch point [41].

Auxiliary RNA binding factors, hnRNPs and SR proteins,

recognize exonic and intronic splicing enhancer and

silencer elements, which modulate splicing at adjacent

5V and 3V sites [42,43]. Splicing is the one major RNA

processing event, which is normally reiterated many times

on a primary transcript. EM reconstruction of pol II

complexes on the amplified BR3 gene in Chironomus

salivary glands shows that no more than one spliceosome

can assemble with the polymerase at a given time [44].

The shape of the complex changes extensively as it

traverses over three dozen introns and exons presumably

reflecting spliceosome dynamics. The spliceosome is

believed to undergo some level of assembly and disas-

sembly each time an intron is removed, but exactly how

spliceosome recycling is achieved between successive

introns in a given transcript remains a major unanswered

question. It is not known whether a spliceosome is

completely released from the transcription complex after

two exons are ligated or whether some components

remain associated with pol II and are reused at down-

stream splice sites. In many yeast genes, U1snRNP
associates with the pol II transcription complex only

when an intron is being transcribed and remains bound

to the complex in the downstream exon consistent with its

initial recruitment to intronic RNA rather than to the pol

II CTD [45]. U1snRNP was also detected on some genes

lacking introns. The results suggest that splicing compo-

nents can be recruited either via binding to the intronic

RNA substrate or to a protein target in the pol II

transcription complex such as the CTD and in some

cases could be handed off from the RNA to the poly-

merase. Binding of the U1snRNP protein Prp40 to the

phosphorylated CTD via its WW domain is likely to

contribute to spliceosome association with elongation

complexes [46]. Because very few yeast genes have more

than one intron, it is possible that a spliceosome recycling

mechanism is not required, whereas in metazoans with

many highly fragmented genes, recycling is likely to be

far more important. Various splicing related factors cop-

urify with pol II from mammalian cells [47–50]. The

relative importance of protein–protein interactions versus

protein–RNA tethering in these experiments has not

always been clear. The precise contacts responsible for

targeting splicing specifically to pol II transcripts remain

to be identified.

Because the 5V and 3V splice sites (ss) are often quite

distant from one another, splicing is the only processing

event for which the RNA recognition sites are synthesized at

different times. Pol II elongates transcripts in a highly

nonuniform way punctuated by frequent pauses but with

an average rate of 1–2 kb/min [51]. The 3V splice site of a

30-kb intron would therefore be synthesized 15–30 min

after the 5V splice site. In this time interval, the 5V splice site
can be readied for splicing by binding U1 snRNP. A 5V ss
may pair with the first 3V ss to appear as proposed by the

‘‘first come first served’’ model [52]. Alternatively, if two or

more 3V splice sites appear in short succession, then more

than one choice may be possible. The competition between

two alternative 3V splice sites is likely influenced by the

delay between when they are extruded from the polymerase.

The most straightforward prediction is that slow transcrip-

tion would favor a proximal 3V ss over a distal site that only
appears after a significant delay. This idea has been tested in

yeast and mammalian cells using pol II mutants and an

inhibitor that slows down elongation [53,54]. In both

systems, slow polymerases shifted the balance in favor of

proximal over distal alternative 3V splice sites thereby

reducing exon skipping. These results strongly support the

idea that the effect of elongation rate on the lag time

between the appearances of different splice sites can mod-

ulate alternative splicing. These experiments therefore argue

for kinetic coupling of transcription and splicing. The effect

of elongation rate on alternative splicing may explain how

different promoter sequences can alter alternative splice site

choices [55] since transcription factors bound to a promoter

can influence the efficiency of elongation [56]. It remains to

be determined whether elongation rate also affects consti-
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tutive splicing where competition between assembly of

functional and nonfunctional splicing complexes could be

influenced by the delay between 5V and 3V ss synthesis,

which determines the period of time available for hnRNPs

and SR proteins to bind the transcript before the first step in

splicing. This possibility is suggested by the observation

that strong transcriptional activators such as Gal4-VP16,

which stimulate transcriptional processivity, also enhance

the efficiency of splicing and 3V end processing [57].

Not only does elongation rate affect splicing but splicing

factors also feed back on elongation. This remarkable

phenomenon was uncovered by Fong and Zhou [58] who

found that spliceosomal snRNPs form a complex with the

elongation factor TAT-SF1, which associates with pol II via

the cyclin T subunit of positive transcription elongation

factor, PTEFb, a kinase that phosphorylates the CTD and

elongation factors Spt5 and RD [15,59,60]. TAT-SF1-

snRNP complexes stimulated elongation of transcripts in a

manner that is enhanced by the presence of a splice site

consistent with in vivo observations that promoter-proximal

splice sites enhance polymerase loading onto a gene [61].

In summary, the picture emerging for cotranscriptional

splicing is that, as with capping, there is a two-way

communication between spliceosome components and the

pol II transcription complex.
3V end formation and the link to transcriptional

termination

Most metazoan mRNAs are processed at their 3V ends by
cleavage and polyadenylation. Replication coupled histone

genes and U snRNAs also made by pol II are processed at

their 3V ends by other mechanisms, which in the case of U2

is dependent on the CTD [10]. The first discovery of

communication between RNA processing and transcription

was the finding that a poly A site is required for termination

of pol II transcription [62–64]. The coupling of 3V end

formation with termination ensures that pol II is only

released from the template after it has completed synthesis

of a full-length transcript. Termination does not require prior

cleavage of the transcript at the poly A site [65] but exactly

how the termination signal is communicated by the cleavage

or polyadenylation apparatus to the polymerase and how the

polymerase responds to that signal remain quite elusive. It

has been recently reported that the speed of transcriptional

elongation can influence poly A site choice lending further

support to the idea of kinetic coupling between transcription

and processing [66].

Most metazoan mRNA 3V ends are produced by cleavage

of the pre-mRNA between conserved AAUAAA and G/U-

rich sequence elements. These regions are recognized by

cleavage and polyadenylation specificity factor (CPSF) and

cleavage stimulation factor (CstF), respectively. Cleavage

requires two additional multi-subunit complexes, CFIm and

CFIIm [67]. Cleavage is closely coupled to poly (A) tail
synthesis by PAP [Poly (A) polymerase], which like cleav-

age also requires CPSF and poly A binding protein,

PABPN1 [68]. The pol II CTD stimulates poly A site

cleavage in Hela cells extracts in the absence of transcrip-

tion [5,16]. The CTD also makes direct contacts with

mammalian CstF p50 [4] and yeast 3V end processing factors
Pcf11, Rna14, and Yhh1 [69–71]. However, it is unclear

exactly how these contacts contribute to targeting cleavage

or polyadenylation to pol II transcripts. Several reports

suggest that phosphorylation of the CTD on Ser2 residues

has special significance for binding of poly A factors and for

efficient poly A site cleavage in Drosophila [72] and yeast

[70,73,74]. Somewhat paradoxically, deletion of the CTD

strongly inhibits poly A site cleavage in metazoan cells but

has a relatively minor effect in yeast [70].

Surprisingly 3V end processing factors are localized with

pol II transcription complexes not only at the 3V end but also

at the 5V end and throughout the length of the genes

[70,75,76]. Interactions between 3V end processing factors

and other components of the transcription machinery have

recently been found to help coordinate cotranscriptional

cleavage or polyadenylation. Yeast Ess1 is a peptidyl prolyl

isomerase that binds to the Ser2 phosphorylated CTD and

contributes to efficient 3V end processing [12,77] probably

by remodeling the CTD conformation. There is also a

fascinating network of interactions between 3V end process-

ing factors and general transcription factors found with pol

II at promoters. CPSF subunits copurify with TFIID [78]

and CstF64, and its budding yeast homologue Rna15

interacts with transcriptional coactivator PC4/Sub1 [79],

which can act to inhibit CTD phosphorylation by CDKs

[80]. Yeast Sub1 and another protein Ssu72 were isolated

because of genetic interactions with TFIIB that helps select

transcriptional start sites [81,82]. Amazingly, Ssu72 like

Sub1 now emerges as another factor that influences mRNA

synthesis at both the extreme 5V end and the extreme 3V end
of the transcription unit. Ssu72 is a protein phosphatase that

functions as a 3V end processing factor required for poly A

site cleavage [83] and proper termination of transcription

[84–86]. Its physiological substrate is still unknown but it

has been suggested that Ssu72 may talk back to the CTD

[84], completing yet another round of two-way communi-

cation between pol II and a processing factor.

There are likely to be many more protein–protein con-

nections and signaling pathways left to be discovered within

the ‘‘mRNA factory’’ complex. Future progress toward

understanding how the factory really operates will depend

on development of in vitro systems that recapitulate coupled

transcription and pre-mRNA processing.
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